论文标题

使用纵向修改治疗政策在竞争风险下的因果生存分析

Causal survival analysis under competing risks using longitudinal modified treatment policies

论文作者

Díaz, Iván, Hoffman, Katherine L, Hejazi, Nima S.

论文摘要

纵向修改的治疗策略(LMTP)最近被开发为一种新的方法,用于定义和估计依赖于治疗的自然价值的因果参数。 LMTP代表了纵向研究的因果推断的重要进步,因为它们允许对多个时间点测量的多个分类,数值或连续暴露的关节效应进行非参数定义和估计。我们将LMTP方法扩展到结果,其中结果是右审查和竞争风险的事件变量。我们提出了使用灵活的数据自适应回归技术来减轻模型错误指定偏差的识别结果和非参数局部高效估计器,同时保留了重要的渐近特性,例如$ \ sqrt {n} $ - 一致性。我们介绍了估计插管对急性肾脏损伤的影响的估计,在199日住院的患者中,其他原因被认为是竞争事件。

Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, numerical, or continuous exposures measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to right-censoring and competing risks. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as $\sqrt{n}$-consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID-19 hospitalized patients, where death by other causes is taken to be the competing event.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源