论文标题
两阶段可压缩/不可压缩的Navier-带有流出边界条件的Stokes系统
Two-phase compressible/incompressible Navier--Stokes system with inflow-outflow boundary conditions
论文作者
论文摘要
我们证明了对可压缩的Navier的薄弱解决方案的存在 - 当密度达到其拥塞水平时,具有奇异压力的stokes系统。这是一个数量,其初始值根据传输方程而演变。然后,我们证明“刚性压力”极限产生了两相可压缩/不可压缩系统,并具有描述自由接口的拥塞约束。我们规定了边界处的速度和密度的价值,在一般有限的$ c^2 $域的边界的流入部分处。边界条件的大小没有限制。
We prove the existence of a weak solution to the compressible Navier--Stokes system with singular pressure that explodes when density achieves its congestion level. This is a quantity whose initial value evolves according to the transport equation. We then prove that the "stiff pressure" limit gives rise to the two-phase compressible/incompressible system with congestion constraint describing the free interface. We prescribe of the velocity at the boundary and the value of density at the inflow part of the boundary of a general bounded $C^2$ domain. There are no restrictions on the size of the boundary conditions.