论文标题
$ f $ iSocrystals的过度融合的曲折标准
A cut-by-curves criterion for overconvergent of $F$-isocrystals
论文作者
论文摘要
让$ x $成为有限字段的平滑计划。据推测,如果$ x $上的收敛$ f $ -isocrystal如果$ x $中包含的每条曲线的限制过高,则过度会过度转化。使用典型和结晶伴侣的理论,我们建立了该标准的较弱版本,我们还假设野生的局部局部局部曲线曲线曲线曲线的局部局部单曲子是通过沿单个主导的形态沿$ x $的单个主导形态进行了琐碎的。
Let $X$ be a smooth scheme over a finite field. It is conjectured that a convergent $F$-isocrystal on $X$ is overconvergent if its restriction to every curve contained in $X$ is overconvergent. Using the theory of étale and crystalline companions, we establish a weaker version of this criterion in which we also assume that the wild local monodromy of the restrictions to curves is trivialized by pullback along a single dominant morphism to $X$.