论文标题
确定无限波导中两态量子系统的电势和梯度耦合
Determining the potential and the gradient coupling of two-state quantum systems in an infinite waveguide
论文作者
论文摘要
我们考虑了同时确定空间依赖电位的逆系数问题,零级耦合项和在$ \ \ m athbb {r}^n $,$ n $ n \ ge 2 $的无限级圆柱域中的两层schrödinger方程的一阶耦合向量。我们证明,这些$ n+1 $未知标量系数可以通过$(n+1)$稳定地检索到hölder,适当地更改系统中附加的初始条件。
We consider the inverse coefficient problem of simultaneously determining the space dependent electric potential, the zero-th order coupling term and the first order coupling vector of a two-state Schrödinger equation in an infinite cylindrical domain of $\mathbb{R}^n$, $n \ge 2$, from finitely many partial boundary measurements of the solution. We prove that these $n+1$ unknown scalar coefficients can be Hölder stably retrieved by $(n+1)$-times suitably changing the initial condition attached at the system.