论文标题

使用图神经网络结合企业破产预测的风险和传染风险

Combining Intra-Risk and Contagion Risk for Enterprise Bankruptcy Prediction Using Graph Neural Networks

论文作者

Zhao, Yu, Wei, Shaopeng, Guo, Yu, Yang, Qing, Chen, Xingyan, Li, Qing, Zhuang, Fuzhen, Liu, Ji, Kou, Gang

论文摘要

预测中小型企业(SME)的破产风险(SME)是金融机构在做出贷款时的重要一步。但是,金融和AI研究领域的现有研究往往仅考虑企业内风险或传染性风险,而忽略了它们的相互作用和组合效应。这项研究首次考虑了两种风险及其在破产预测中的共同影响。具体而言,我们首先根据其风险内学习的统计学意义企业风险指标提出了企业内企业内部编码器。然后,我们根据企业的关系图从企业知识图中提出了一个企业传染风险编码器,以进行其传染风险嵌入。特别是,传染风险编码器既包括新提出的高图神经网络和异质图神经网络,这些神经网络可以在两个不同方面建模传播风险,即基于超越来越多的常见风险因素和直接扩散的风险,以及对邻居的直接扩散风险。为了评估该模型,我们收集现实世界中的中小型企业数据,并构建一个名为SMESD的新型基准数据集。我们提供对数据集的开放访问,这有望进一步促进财务风险分析的研究。针对十二个最先进的基线的SMESD实验证明了拟议模型对破产预测的有效性。

Predicting the bankruptcy risk of small and medium-sized enterprises (SMEs) is an important step for financial institutions when making decisions about loans. Existing studies in both finance and AI research fields, however, tend to only consider either the intra-risk or contagion risk of enterprises, ignoring their interactions and combinatorial effects. This study for the first time considers both types of risk and their joint effects in bankruptcy prediction. Specifically, we first propose an enterprise intra-risk encoder based on statistically significant enterprise risk indicators for its intra-risk learning. Then, we propose an enterprise contagion risk encoder based on enterprise relation information from an enterprise knowledge graph for its contagion risk embedding. In particular, the contagion risk encoder includes both the newly proposed Hyper-Graph Neural Networks and Heterogeneous Graph Neural Networks, which can model contagion risk in two different aspects, i.e. common risk factors based on hyperedges and direct diffusion risk from neighbors, respectively. To evaluate the model, we collect real-world multi-sources data on SMEs and build a novel benchmark dataset called SMEsD. We provide open access to the dataset, which is expected to further promote research on financial risk analysis. Experiments on SMEsD against twelve state-of-the-art baselines demonstrate the effectiveness of the proposed model for bankruptcy prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源