论文标题
智能辅导系统可转移的学生绩效建模
Transferable Student Performance Modeling for Intelligent Tutoring Systems
论文作者
论文摘要
现在,全球数百万的学习者正在使用智能辅导系统(ITS)。 ITS的核心依靠机器学习算法来跟踪每个用户随着时间的变化性能水平,以提供个性化的指导。至关重要的是,使用先前学习者的互动序列数据对学生绩效模型进行培训,以分析未来学习者生成的数据。当引入新课程时,这将引起一个冷启动的问题,该课程没有可用的培训数据。在这里,我们将转移学习技术视为一种通过利用现有课程的日志数据来为新课程提供准确绩效预测的一种方式。我们研究了两个设置:(i)在幼稚的转移设置中,我们提出了可以应用于任何课程的课程不合稳定绩效模型。 (ii)在归纳转移设置中,我们使用小规模的目标课程数据(例如,在一项试点研究中收集),将预训练的课程不可吻合的绩效模型调整为新课程。我们使用来自5个不同数学课程的学生互动序列数据评估了提出的技术,其中包含来自现实世界中大规模的47,000名学生的数据。使用人类领域专家提供的其他功能(例如,在新课程中的问题上的难度评分)但没有学生互动培训数据的新课程的其他功能的课程不足模型,可以与标准BKT和PFA模型相等的预测准确性,这些模型使用新课程中成千上万学生的培训数据。在归纳设置中,我们的转移学习方法比传统绩效模型更准确地预测,而两者都可以使用有限的学生互动培训数据(<100名学生)。
Millions of learners worldwide are now using intelligent tutoring systems (ITSs). At their core, ITSs rely on machine learning algorithms to track each user's changing performance level over time to provide personalized instruction. Crucially, student performance models are trained using interaction sequence data of previous learners to analyse data generated by future learners. This induces a cold-start problem when a new course is introduced for which no training data is available. Here, we consider transfer learning techniques as a way to provide accurate performance predictions for new courses by leveraging log data from existing courses. We study two settings: (i) In the naive transfer setting, we propose course-agnostic performance models that can be applied to any course. (ii) In the inductive transfer setting, we tune pre-trained course-agnostic performance models to new courses using small-scale target course data (e.g., collected during a pilot study). We evaluate the proposed techniques using student interaction sequence data from 5 different mathematics courses containing data from over 47,000 students in a real world large-scale ITS. The course-agnostic models that use additional features provided by human domain experts (e.g, difficulty ratings for questions in the new course) but no student interaction training data for the new course, achieve prediction accuracy on par with standard BKT and PFA models that use training data from thousands of students in the new course. In the inductive setting our transfer learning approach yields more accurate predictions than conventional performance models when only limited student interaction training data (<100 students) is available to both.