论文标题

通过符号能力识别对象

Recognition of objects through symplectic capacities

论文作者

Guggisberg, Yann, Ziltener, Fabian

论文摘要

我们证明,广义的符号能力识别符号类别中的对象,其对象的形式为$(m,ω)$,因此$ m $是紧凑型和1个连接的歧管,$ω$是$ m $的确切符号形式,并且存在$ m $ $ m $的边界。因此,一组广义的符号能力是此类类别的完全不变。这回答了Cieliebak,Hofer,Latschev和Schlenk的问题。除了$ \ mathbb {r}^4 $中的歧管,椭圆形和polydiscs的识别结果外,这似乎是有关此问题的第一个结果。令人惊讶的是,我们的结果对于差异形式类别更普遍。因此,对象的识别不是符合性现象。 我们还证明了标准化能力的结果版本。

We prove that the generalized symplectic capacities recognize objects in symplectic categories whose objects are of the form $(M, ω)$, such that $M$ is a compact and 1-connected manifold, $ω$ is an exact symplectic form on $M$, and there exists a boundary component of $M$ with negative helicity. The set of generalized symplectic capacities is thus a complete invariant for such categories. This answers a question by Cieliebak, Hofer, Latschev, and Schlenk. It appears to be the first result concerning this question, except for recognition results for manifolds of dimension 2, ellipsoids, and polydiscs in $\mathbb{R}^4$. Strikingly, our result holds more generally for differential form categories. Recognition of objects is therefore not a symplectic phenomenon. We also prove a version of the result for normalized capacities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源