论文标题
有限长度的模块化晶格(B部分)
Modular lattices of finite length (Part B)
论文作者
论文摘要
B部分(一个涉及四个部分的项目的B部分)是关于“线路基础”的,这是C. Herrmann和作者在80年代后期提出的概念。线的基部试图以几何方式来描述给定的模块化晶格,类似于投影几何形状如何描述互补的模块化晶格。这个产生的结果是,每个模块化晶格的有限长度d(l),并且具有S(l)许多最大一致性,至少具有2d(l)-s(L)许多可连接的元素。此外,提出了一种算法,该算法以压缩方式计算任何(完整的)晶格子(W)的任何(足够已知的)有限的R模块W。
Part B (of a project involving four Parts) is about "bases of lines", a concept introduced by C. Herrmann and the author in the late 80's. Bases of lines attempt to describe a given modular lattice in a geometric way akin to how projective geometries describe complemented modular lattices. This e.g. yields the result that each modular lattice L of finite length d(L), and having s(L) many maximal congruences, has at least 2d(L)-s(L) many join-irreducible elements. Furthermore, an algorithm is proposed that calculates, in a compressed way, the (full) submodule lattice Sub(W) of any (sufficiently known) finite R-module W.