论文标题

深度神经网络以纠正CFD中的子精确错误

Deep Neural Networks to Correct Sub-Precision Errors in CFD

论文作者

Haridas, Akash, Vadlamani, Nagabhushana Rao, Minamoto, Yuki

论文摘要

在求解离散的部分微分方程时,数值物理模拟中的信息损失可能来自各种来源。特别地,与等效的64位模拟相比,使用低精确的16位浮点算术进行模拟时,与数值精度有关的错误(“子精度错误”)可能会积累关注量。另一方面,低精度计算比高精度计算的资源密集程度较低。最近提出的几种机器学习技术已成功地纠正了由于粗糙的空间离散化而纠正错误。在这项工作中,我们扩展了这些技术,以改善以低数值精度执行的CFD模拟。我们量化了在Kolmogorov强迫湍流测试案例中累积的与精度相关的错误。随后,我们采用了卷积神经网络,以及一个完全可区分的数值求解器,执行16位算术,以学习紧密耦合的ML-CFD混合求解器。与16位求解器相比,我们证明了混合求解器在改善与模拟相关的各种指标方面的功效。

Information loss in numerical physics simulations can arise from various sources when solving discretized partial differential equations. In particular, errors related to numerical precision ("sub-precision errors") can accumulate in the quantities of interest when the simulations are performed using low-precision 16-bit floating-point arithmetic compared to an equivalent 64-bit simulation. On the other hand, low-precision computation is less resource intensive than high-precision computation. Several machine learning techniques proposed recently have been successful in correcting errors due to coarse spatial discretization. In this work, we extend these techniques to improve CFD simulations performed with low numerical precision. We quantify the precision-related errors accumulated in a Kolmogorov forced turbulence test case. Subsequently, we employ a Convolutional Neural Network together with a fully differentiable numerical solver performing 16-bit arithmetic to learn a tightly-coupled ML-CFD hybrid solver. Compared to the 16-bit solver, we demonstrate the efficacy of the hybrid solver towards improving various metrics pertaining to the statistical and pointwise accuracy of the simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源