论文标题

改善贪婪的核心设定配置,以使用不确定性尺度的距离进行主动学习

Improving greedy core-set configurations for active learning with uncertainty-scaled distances

论文作者

Li, Yuchen, Rudzicz, Frank

论文摘要

我们通过不确定性的因素和寻找低信任配置的因素​​来缩放核心算法的距离,从而发现了CIFAR10/100和SVHN图像分类的样品效率的显着提高,尤其是在较大的获取尺寸中。我们展示了我们的修改的必要性,并解释了在对模型不确定性和错误分类的关系的假设下,核心损失损失收敛的概率二次加速造成的改善是如何引起的。

We scale perceived distances of the core-set algorithm by a factor of uncertainty and search for low-confidence configurations, finding significant improvements in sample efficiency across CIFAR10/100 and SVHN image classification, especially in larger acquisition sizes. We show the necessity of our modifications and explain how the improvement is due to a probabilistic quadratic speed-up in the convergence of core-set loss, under assumptions about the relationship of model uncertainty and misclassification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源