论文标题
带有分散边界的太阳能冠状环中的站立香肠扰动:初始问题 - 问题的视角
Standing Sausage Perturbations in solar coronal loops with diffuse boundaries: An initial-value-problem perspective
论文作者
论文摘要
在无压磁性水力动力学中工作,我们研究了一维圆柱形平衡中线性快速香肠模式(FSM)的某些特殊分散性能的后果,其连续径向密度曲线($ρ_0(r)$)。正如最近在固体数学基础上识别的那样,当$ρ_0(r)$在标称圆柱体以外的较慢变化时,FSM可能不存在截止轴向波数。因此,对于任意轴向波数和密度对比,可能存在捕获的模式,其轴向相位的轴向相位速度与外部Alfv $ \ acute {\ rm e} $ n速度几乎不同。如果这些被困的模式确实出现在相关的初始值问题(IVP)的解决方案中,那么FSM的机会比经典理论观察到的机会要比预期的要好得多,并且可以被调用以说明比实践更广泛的周期性范围。但是,以活动区域回路中的轴向基本原理为例,我们表明,在我们对IVP的有限差异溶液中看不到这种长波长的期望,然后通过超越重新分析IVP的必要特征模型来探索其原因。至少对于我们检查的参数,捕获模式的特征函数的特征是空间范围远远超过了初始扰动的空间范围的观察范围,这意味着捕获模式可以接收的能量的可忽略不计。我们得出的结论是,在被检查的平衡中缺乏FSM的截止波数并不能保证独特的时间行为。
Working in pressureless magnetohydrodynamics, we examine the consequences of some peculiar dispersive properties of linear fast sausage modes (FSMs) in one-dimensional cylindrical equilibria with a continuous radial density profile ($ρ_0(r)$). As recognized recently on solid mathematical grounds, cutoff axial wavenumbers may be absent for FSMs when $ρ_0(r)$ varies sufficiently slowly outside the nominal cylinder. Trapped modes may therefore exist for arbitrary axial wavenumbers and density contrasts, their axial phase speeds in the long-wavelength regime differing little from the external Alfv$\acute{\rm e}$n speed. If these trapped modes indeed show up in the solutions to the associated initial value problem (IVP), then FSMs have a much better chance to be observed than expected with classical theory, and can be invoked to account for a considerably broader range of periodicities than practiced. However, with axial fundamentals in active region loops as an example, we show that this long-wavelength expectation is not seen in our finite-difference solutions to the IVP, the reason for which is then explored by superposing the necessary eigenmodes to re-solve the IVP. At least for the parameters we examine, the eigenfunctions of trapped modes are characterized by a spatial extent well exceeding the observationally reasonable range of the spatial extent of initial perturbations, meaning a negligible fraction of energy that a trapped mode can receive. We conclude that the absence of cutoff wavenumbers for FSMs in the examined equilibrium does not guarantee a distinct temporal behavior.