论文标题

分配不可分割的项目,带有个人喜好图

Allocation of Indivisible Items with Individual Preference Graphs

论文作者

Chiarelli, Nina, Dallard, Clément, Darmann, Andreas, Lendl, Stefan, Milanič, Martin, Muršič, Peter, Pferschy, Ulrich, Pivač, Nevena

论文摘要

本文研究了通过定向的无环图表示每个代理的偏好时不可分割的项目分配给代理的。每个首选项图的顶点代表相应代理批准的项目的子集。在这样的图中,ARC $(a,b)$意味着相应的代理更喜欢项目$ a $而不是项目$ b $。我们通过计算代理商批准的未分配项目的数量来介绍对代理商的不满意的新度量,并且不再将首选项目分配给代理商。考虑到两个问题变体,我们以最小化(i)对所有代理的总不满意的方式寻求对代理的分配,或者(ii)代理人的最大不满意。对于两个优化问题,我们研究计算复杂性的状态并获得NP硬度结果以及关于自然基础图结构(例如恒星,树木,路径和匹配)的多项式算法。我们还分析了两个问题的参数化复杂性,相对于与代理数量,不满意阈值,优先图的顶点度和树宽相关的各种参数。

This paper studies the allocation of indivisible items to agents, when each agent's preferences are expressed by means of a directed acyclic graph. The vertices of each preference graph represent the subset of items approved of by the respective agent. An arc $(a,b)$ in such a graph means that the respective agent prefers item $a$ over item $b$. We introduce a new measure of dissatisfaction of an agent by counting the number of non-assigned items which are approved of by the agent and for which no more preferred item is allocated to the agent. Considering two problem variants, we seek an allocation of the items to the agents in a way that minimizes (i) the total dissatisfaction over all agents or (ii) the maximum dissatisfaction among the agents. For both optimization problems we study the status of computational complexity and obtain NP-hardness results as well as polynomial algorithms with respect to natural underlying graph structures, such as stars, trees, paths, and matchings. We also analyze the parameterized complexity of the two problems with respect to various parameters related to the number of agents, the dissatisfaction threshold, the vertex degrees of the preference graphs, and the treewidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源