论文标题
分子间电位的湍流:雷诺数的粘度和过渡范围
Turbulence via intermolecular potential: Viscosity and transition range of the Reynolds number
论文作者
论文摘要
流体中的湍流是一种普遍存在的现象,其特征是光滑,层流向快速变化的混乱动力学的自发过渡。 1883年,雷诺(Reynolds)在实验上证明,在最初的水流流动中,湍流运动出现而没有任何可测量的外部干扰。直到今天,湍流仍然是流体力学中的主要未解决现象。特别是,缺乏数学模型,其中湍流动力学从层流开始自然出现。最近,我们提出了一种新的气体湍流理论,根据该理论,通过该电势的平均场效应在惯性气流中产生湍流运动。在当前的工作中,我们通过在直线管中的正常条件下的空气流量以不同的雷诺数值模拟正常条件下的气流来研究粘度在湍流模型中的效果。我们发现,模型中层流和动荡流之间的过渡不会发生任何故意扰动,因为雷诺数的数量从2000年增加到4000。随着模拟流量变得湍流,我们模型中动力学的时间平均傅立叶光谱的衰减速率在我们的模型中接近Kolmogorov kolmogorov kolmogorov ferverse forsevers forsevers forsevers forsevers forsevers forsevers forsevers forsevers forsevers。两种结果都与实验和观察结果一致。
Turbulence in fluids is an ubiquitous phenomenon, characterized by spontaneous transition of a smooth, laminar flow to rapidly changing, chaotic dynamics. In 1883, Reynolds experimentally demonstrated that, in an initially laminar flow of water, turbulent motions emerge without any measurable external disturbance. To this day, turbulence remains a major unresolved phenomenon in fluid mechanics; in particular, there is a lack of a mathematical model where turbulent dynamics emerge naturally from a laminar flow. Recently, we proposed a new theory of turbulence in gases, according to which turbulent motions are created in an inertial gas flow by the mean field effect of the intermolecular potential. In the current work, we investigate the effect of viscosity in our turbulence model, by numerically simulating the air flow at normal conditions in a straight pipe for different values of the Reynolds number. We find that the transition between the laminar and turbulent flows in our model occurs without any deliberate perturbations as the Reynolds number increases from 2000 to 4000. As the simulated flow becomes turbulent, the decay rate of the time averaged Fourier spectrum of the kinetic energy in our model approaches Kolmogorov's inverse five-thirds law. Both results are consistent with experiments and observations.