论文标题
双四合一的功能性演算
Functional calculus for dual quaternions
论文作者
论文摘要
我们给出了$ f(η)$的公式,其中$ f:\ mathbb c \ to \ mathbb c $是一个不断的可分辨函数,满足$ f(\ bar z)= \ ediflline {f(z)} $,而$η$是双重推迟。请注意,如果$η$仅仅是双数号或四元组,则此公式是直接或众所周知的。如果仅当$ f $是多项式时才证明结果,那么本文的方法是基础的。
We give a formula for $f(η)$, where $f :\mathbb C \to \mathbb C$ is a continuously differentiable function satisfying $f(\bar z) = \overline{f(z)}$, and $η$ is a dual quaternion. Note this formula is straightforward or well known if $η$ is merely a dual number or a quaternion. If one is willing to prove the result only when $f$ is a polynomial, then the methods of this paper are elementary.