论文标题
经济模型的转移表现
The Transfer Performance of Economic Models
论文作者
论文摘要
经济学家通常使用来自特定领域的数据来估算模型,例如估计特定主题库中的风险偏好或特定类别的彩票。模型的预测是否跨域推断了孔,取决于估计的模型是否捕获了可推广的结构。我们为此“偏见”预测问题提供了可拖动的公式,并根据其对来自新域的数据的性能来定义模型的传输误差。我们得出有限样本的预测间隔,这些预测间隔可保证在域是IID时用用户选择的概率涵盖已实现的转移错误,并使用这些间隔来比较经济模型和黑匣子算法的可传递性,以预测确定性等效物。我们发现,在此应用程序中,当估计和测试来自同一领域的数据时,我们考虑的黑匣子算法优于标准经济模型,但是经济模型比黑框算法更好地推广了范围的范围。
Economists often estimate models using data from a particular domain, e.g. estimating risk preferences in a particular subject pool or for a specific class of lotteries. Whether a model's predictions extrapolate well across domains depends on whether the estimated model has captured generalizable structure. We provide a tractable formulation for this "out-of-domain" prediction problem and define the transfer error of a model based on how well it performs on data from a new domain. We derive finite-sample forecast intervals that are guaranteed to cover realized transfer errors with a user-selected probability when domains are iid, and use these intervals to compare the transferability of economic models and black box algorithms for predicting certainty equivalents. We find that in this application, the black box algorithms we consider outperform standard economic models when estimated and tested on data from the same domain, but the economic models generalize across domains better than the black-box algorithms do.