论文标题

计算细胞学的深度学习:调查

Deep Learning for Computational Cytology: A Survey

论文作者

Jiang, Hao, Zhou, Yanning, Lin, Yi, Chan, Ronald CK, Liu, Jiang, Chen, Hao

论文摘要

计算细胞学是医学图像计算领域中关键,快速开发但充满挑战的主题,它通过计算机辅助技术来分析数字化的细胞学图像进行癌症筛查。最近,越来越多的深度学习(DL)算法在医学图像分析中取得了重大进展,从而增强了细胞学研究的出版物。为了调查高级方法和综合应用,我们在本文中调查了120多个基于DL的细胞学图像分析的出版物。我们首先介绍了各种深度学习方法,包括完全监督,弱监督,无监督和转移学习。然后,我们系统地总结了公共数据集,评估指标,多功能细胞学图像分析应用程序,包括分类,检测,细分和其他相关任务。最后,我们讨论了当前的挑战和计算细胞学的潜在研究方向。

Computational cytology is a critical, rapid-developing, yet challenging topic in the field of medical image computing which analyzes the digitized cytology image by computer-aided technologies for cancer screening. Recently, an increasing number of deep learning (DL) algorithms have made significant progress in medical image analysis, leading to the boosting publications of cytological studies. To investigate the advanced methods and comprehensive applications, we survey more than 120 publications of DL-based cytology image analysis in this article. We first introduce various deep learning methods, including fully supervised, weakly supervised, unsupervised, and transfer learning. Then, we systematically summarize the public datasets, evaluation metrics, versatile cytology image analysis applications including classification, detection, segmentation, and other related tasks. Finally, we discuss current challenges and potential research directions of computational cytology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源