论文标题

变压器网络对原始脑电图数据分类的功效

Efficacy of Transformer Networks for Classification of Raw EEG Data

论文作者

Siddhad, Gourav, Gupta, Anmol, Dogra, Debi Prosad, Roy, Partha Pratim

论文摘要

由于最近在自然语言处理(NLP)中,变压器网络取得了前所未有的成功,它们已成功地适应了计算机视觉,生成的对抗网络(GAN)和增强学习等领域。分类的脑电图(EEG)数据具有挑战性,研究人员过于依赖于预处理和手工制作的特征提取。尽管在其他几个领域中实现了自动化功能提取,但尚未完成深度学习。在本文中,探索了变压器网络对原始脑电图数据分类(已清洁和预处理)的分类的功效。在本地(年龄和性别数据)和公共数据集(Stew)上评估了变压器网络的性能。首先,构建了使用变压器网络的分类器,以对具有原始静止状态脑电图数据的人的年龄和性别进行分类。其次,分类器通过开放访问原始多任务心理工作负载EEG数据(Stew)调整为心理工作负载分类。该网络的准确性可与本地(年龄和性别数据集; 94.53%(性别)和87.79%(年龄))和公众(Stew DataSet; 95.28%; 95.28%(两个工作负载级别)和88.72%(三个工作负载水平))的准确性。使用RAW EEG数据实现了精度值,而无需提取功能。结果表明,基于变压器的深度学习模型可以成功地减少对EEG数据进行重大特征提取以成功分类的需求。

With the unprecedented success of transformer networks in natural language processing (NLP), recently, they have been successfully adapted to areas like computer vision, generative adversarial networks (GAN), and reinforcement learning. Classifying electroencephalogram (EEG) data has been challenging and researchers have been overly dependent on pre-processing and hand-crafted feature extraction. Despite having achieved automated feature extraction in several other domains, deep learning has not yet been accomplished for EEG. In this paper, the efficacy of the transformer network for the classification of raw EEG data (cleaned and pre-processed) is explored. The performance of transformer networks was evaluated on a local (age and gender data) and a public dataset (STEW). First, a classifier using a transformer network is built to classify the age and gender of a person with raw resting-state EEG data. Second, the classifier is tuned for mental workload classification with open access raw multi-tasking mental workload EEG data (STEW). The network achieves an accuracy comparable to state-of-the-art accuracy on both the local (Age and Gender dataset; 94.53% (gender) and 87.79% (age)) and the public (STEW dataset; 95.28% (two workload levels) and 88.72% (three workload levels)) dataset. The accuracy values have been achieved using raw EEG data without feature extraction. Results indicate that the transformer-based deep learning models can successfully abate the need for heavy feature-extraction of EEG data for successful classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源