论文标题
有限温度在二聚磁铁Na $ _2 $ cu $ _2 $ _2 $ teo $ _6 $中的有限温度强相关的证据
Evidence for strong correlations at finite temperatures in the dimerized magnet Na$_2$Cu$_2$TeO$_6$
论文作者
论文摘要
形成的二聚磁体交替的海森堡链具有量子相干性和纠缠,因此可以在量子信息和计算中找到潜在的应用。但是,磁系统通常会在有限温度下进行热谐波。在这里,我们在交替的抗磁磁性磁磁链中表现出非弹性中子散射结果,复合na $ _2 $ _2 $ _2 $ _2 $ teo $ _6 $,激发的准粒子可以抵抗热变性并在升高温度下保持较强的相关性。在低温下,我们观察到由沿晶体$ b $轴形成的二聚体引起的清晰色散单线刺激。激发差距为$ \ sim $ 18 MEV,带宽约为差距的一半。频带顶能量沿[100]方向具有弱调制,这表明链链耦合较小。差距增加,而带宽随温度的升高而减小,从而导致三倍的可用相空间大大减少。结果,随着温度的升高,洛伦兹型能量拓宽变得高度不对称。这些结果与硬核约束和准粒子相互作用产生的密切相关状态有关。我们认为这些结果不仅是在有限温度下在Na $ _2 $ _2 $ _2 $ _2 $ teo $ _6 $的有限温度下的证据,而且还证明了在广泛的量子磁系统中强相关状态的普遍性。
Dimerized magnets forming alternating Heisenberg chains exhibit quantum coherence and entanglement and thus can find potential applications in quantum information and computation. However, magnetic systems typically undergo thermal decoherence at finite temperatures. Here, we show inelastic neutron scattering results on an alternating antiferromagnetic-ferromagnetic chain compound Na$_2$Cu$_2$TeO$_6$ that the excited quasiparticles can counter thermal decoherence and maintain strong correlations at elevated temperatures. At low temperatures, we observe clear dispersive singlet-triplet excitations arising from the dimers formed along the crystalline $b$-axis. The excitation gap is of $\sim$18 meV and the bandwidth is about half of the gap. The band top energy has a weak modulation along the [100] direction, indicative of a small interchain coupling. The gap increases while the bandwidth decreases with increasing temperature, leading to a strong reduction in the available phase space for the triplons. As a result, the Lorentzian-type energy broadening becomes highly asymmetric as the temperature is raised. These results are associated with a strongly correlated state resulting from hard-core constraint and quasiparticle interactions. We consider these results to be not only evidence for strong correlations at finite temperatures in Na$_2$Cu$_2$TeO$_6$, but also for the universality of the strongly correlated state in a broad range of quantum magnetic systems.