论文标题

高维的Heegaard浮子同源性和Hecke代数

Higher-dimensional Heegaard Floer homology and Hecke algebras

论文作者

Honda, Ko, Tian, Yin, Yuan, Tianyu

论文摘要

给定一个大于0的封闭式表面$σ$,我们从$ t^*σ$的cotangent纤维的高维Heegaard Floer同源物中构造了一个地图$ \ Mathcal {f} $。我们还为穿刺表面建立了类似的结果。

Given a closed oriented surface $Σ$ of genus greater than 0, we construct a map $\mathcal{F}$ from the higher-dimensional Heegaard Floer homology of the cotangent fibers of $T^*Σ$ to the Hecke algebra associated to $Σ$ and show that $\mathcal{F}$ is an isomorphism of algebras. We also establish analogous results for punctured surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源