论文标题
部分可观测时空混沌系统的无模型预测
Meta-learning with GANs for anomaly detection, with deployment in high-speed rail inspection system
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Anomaly detection has been an active research area with a wide range of potential applications. Key challenges for anomaly detection in the AI era with big data include lack of prior knowledge of potential anomaly types, highly complex and noisy background in input data, scarce abnormal samples, and imbalanced training dataset. In this work, we propose a meta-learning framework for anomaly detection to deal with these issues. Within this framework, we incorporate the idea of generative adversarial networks (GANs) with appropriate choices of loss functions including structural similarity index measure (SSIM). Experiments with limited labeled data for high-speed rail inspection demonstrate that our meta-learning framework is sharp and robust in identifying anomalies. Our framework has been deployed in five high-speed railways of China since 2021: it has reduced more than 99.7% workload and saved 96.7% inspection time.