论文标题

DNNF电路的伪多项式TOP-K算法

Pseudo Polynomial-Time Top-k Algorithms for d-DNNF Circuits

论文作者

Bourhis, Pierre, Duchien, Laurence, Dusart, Jérémie, Lonca, Emmanuel, Marquis, Pierre, Quinton, Clément

论文摘要

我们有兴趣计算给定DNNF电路$ c $的$ k $最优选的型号,在该模型中,首选项关系基于一个称为单调的代数结构,完全订购,semigroup $(k,\ otimes,<)$。在我们的环境中,$ c $中的每个文字都具有$ k $的值,而作业的值是通过使用$ \ otimes $汇总的$ k $的元素,即相应的文字的值。我们提出了一种算法,该算法在具有最大值W.R.T.的$ k $型号的$ k $型号中。 $ <$,并表明该算法在$ k $和$ c $的大小中时及时运行。我们还提出了一种伪多项式算法,用于得出可以达到的顶部$ k $值,前提是满足了半群的额外(但不太苛刻)的要求。在相同的假设下,我们提出了一种伪多项式时间算法,该算法将$ c $转换为d-dnnf电路$ c'$完全满足了$ c $的$ c $,在顶部$ k $的$ k $中具有价值。最后,专注于Semigroup $(\ Mathbb {n}, +,<)$,我们在大量实例上比较了我们基于编译的算法计算$ K $ TOP解决方案的表演与解决同一问题的算法解决方案的性能,但基于零件加权的Maxsat solver。

We are interested in computing $k$ most preferred models of a given d-DNNF circuit $C$, where the preference relation is based on an algebraic structure called a monotone, totally ordered, semigroup $(K, \otimes, <)$. In our setting, every literal in $C$ has a value in $K$ and the value of an assignment is an element of $K$ obtained by aggregating using $\otimes$ the values of the corresponding literals. We present an algorithm that computes $k$ models of $C$ among those having the largest values w.r.t. $<$, and show that this algorithm runs in time polynomial in $k$ and in the size of $C$. We also present a pseudo polynomial-time algorithm for deriving the top-$k$ values that can be reached, provided that an additional (but not very demanding) requirement on the semigroup is satisfied. Under the same assumption, we present a pseudo polynomial-time algorithm that transforms $C$ into a d-DNNF circuit $C'$ satisfied exactly by the models of $C$ having a value among the top-$k$ ones. Finally, focusing on the semigroup $(\mathbb{N}, +, <)$, we compare on a large number of instances the performances of our compilation-based algorithm for computing $k$ top solutions with those of an algorithm tackling the same problem, but based on a partial weighted MaxSAT solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源