论文标题

基于平衡域分类器以进行对象检测的域不变提案

Domain-Invariant Proposals based on a Balanced Domain Classifier for Object Detection

论文作者

Wu, Zhize, Wang, Xiaofeng, Xu, Tong, Yang, Xuebin, Zou, Le, Xu, Lixiang, Weise, Thomas

论文摘要

来自图像的对象识别意味着自动查找感兴趣的对象并返回其类别和位置信息。从深度学习的研究中受益,例如卷积神经网络〜(CNN)和生成对抗网络,该领域的性能得到了显着提高,尤其是当训练和测试数据从类似的分布中汲取时。但是,不匹配分布,即域的变化,导致性能下降。在本文中,我们通过对抗训练来学习域分类器来构建域不变的探测器。基于以前的图像和实例级别特征的工作,我们通过在更快的\ mbox {r-cnn}内引入域的适应性组件来进一步减轻域的移动。我们使用对抗性学习将域分类网络嵌入了区域建议网络(RPN)。现在,RPN可以通过有效地对齐它们之间的特征来在不同域中生成准确的区域建议。为了减轻对抗性学习过程中不稳定的收敛性,我们引入了平衡的域分类器以及网络学习率调整策略。我们使用四个标准数据集进行了全面的实验。结果证明了我们对象检测方法在域移动方案中的有效性和鲁棒性。

Object recognition from images means to automatically find object(s) of interest and to return their category and location information. Benefiting from research on deep learning, like convolutional neural networks~(CNNs) and generative adversarial networks, the performance in this field has been improved significantly, especially when training and test data are drawn from similar distributions. However, mismatching distributions, i.e., domain shifts, lead to a significant performance drop. In this paper, we build domain-invariant detectors by learning domain classifiers via adversarial training. Based on the previous works that align image and instance level features, we mitigate the domain shift further by introducing a domain adaptation component at the region level within Faster \mbox{R-CNN}. We embed a domain classification network in the region proposal network~(RPN) using adversarial learning. The RPN can now generate accurate region proposals in different domains by effectively aligning the features between them. To mitigate the unstable convergence during the adversarial learning, we introduce a balanced domain classifier as well as a network learning rate adjustment strategy. We conduct comprehensive experiments using four standard datasets. The results demonstrate the effectiveness and robustness of our object detection approach in domain shift scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源