论文标题
用于信息泄漏的无限 - rényi发散的差异公式
A Variational Formula for Infinity-Rényi Divergence with Applications to Information Leakage
论文作者
论文摘要
我们提出了秩序无穷大差异的变异表征。我们的表征与猜测有关:目标函数是应用于正确猜测未知随机变量的概率的最大预期值的比率。我们各变化表征的一个重要方面是,只要满足某些规律性条件,它仍然对所考虑的特定增益函数仍然不可知。此外,我们通过利用我们的变异表征来定义两种可调信息泄漏量度的变体,即最大$α$ - 渗出量,并通过利用我们的变异表征来获得这些信息度量的封闭形式表达式。
We present a variational characterization for the Rényi divergence of order infinity. Our characterization is related to guessing: the objective functional is a ratio of maximal expected values of a gain function applied to the probability of correctly guessing an unknown random variable. An important aspect of our variational characterization is that it remains agnostic to the particular gain function considered, as long as it satisfies some regularity conditions. Also, we define two variants of a tunable measure of information leakage, the maximal $α$-leakage, and obtain closed-form expressions for these information measures by leveraging our variational characterization.