论文标题
通过基于层次注意的图形神经网络改善欺诈检测
Improving Fraud Detection via Hierarchical Attention-based Graph Neural Network
论文作者
论文摘要
图形神经网络(GNN)已成为欺诈检测任务的强大工具,在这种工具中,通过通过不同的关系汇总邻居信息来识别欺诈性节点。为了解决此类检测,狡猾的欺诈者通过连接合法用户(即关系伪装)或提供看似合法的反馈(即功能迷彩),诉诸伪装。广泛的解决方案根据原始节点功能加强了使用邻居选择器的GNN聚合过程。当识别欺诈者的欺诈者时,这种方法可能会遇到限制,而伪装功能使其很难与合法邻居区分开。在本文中,我们提出了一个基于分层注意力的图形神经网络(HA-GNN),用于欺诈检测,该欺诈检测结合了跨不同关系的加权邻接矩阵。这是在关系密度理论中的动机,并被利用用于形成基于分层注意力的图形神经网络。具体而言,我们设计了一个关系注意模块,以反映两个节点之间的扎带强度,而邻居注意模块捕获了与图相关的远程结构亲和力。我们通过汇总来自本地/远程结构和原始节点特征的信息来生成节点嵌入。三个现实世界数据集的实验证明了我们模型对最先进的有效性。
Graph neural networks (GNN) have emerged as a powerful tool for fraud detection tasks, where fraudulent nodes are identified by aggregating neighbor information via different relations. To get around such detection, crafty fraudsters resort to camouflage via connecting to legitimate users (i.e., relation camouflage) or providing seemingly legitimate feedbacks (i.e., feature camouflage). A wide-spread solution reinforces the GNN aggregation process with neighbor selectors according to original node features. This method may carry limitations when identifying fraudsters not only with the relation camouflage, but with the feature camouflage making them hard to distinguish from their legitimate neighbors. In this paper, we propose a Hierarchical Attention-based Graph Neural Network (HA-GNN) for fraud detection, which incorporates weighted adjacency matrices across different relations against camouflage. This is motivated in the Relational Density Theory and is exploited for forming a hierarchical attention-based graph neural network. Specifically, we design a relation attention module to reflect the tie strength between two nodes, while a neighborhood attention module to capture the long-range structural affinity associated with the graph. We generate node embeddings by aggregating information from local/long-range structures and original node features. Experiments on three real-world datasets demonstrate the effectiveness of our model over the state-of-the-arts.