论文标题

$ l^2(γ\ backslash g)$和更高等级的正征本的回火

Temperedness of $L^2(Γ\backslash G)$ and positive eigenfunctions in higher rank

论文作者

Edwards, Sam, Oh, Hee

论文摘要

令$ g = \ operatoRatorname {so}^\ circ(n,1)\ times \ times \ operatorName {so}^\ circ(n,1)$和$ x = {\ sathbb h}^{n} \ times {\ times {\ times {\ mathb h}^n} $ n \ n \ ge ge 2 $。对于一对$(π_1,π_2)$的非元素凸COCOCOCOCOCOCOCTACT表示,将有限生成的组$σ$ $ \ operatatorName {so}^\ circ(n,1)$,令$γ=(π_1\ timesπ_2)(σ)$。表示$ laplacian的$ l^2 $ -spectrum在$γ\ backslash x $ by $λ_0$上,我们显示: (1)$ l^2(γ\ backslash g)$被纠正,$λ_0= \ frac {1} {2} {2}(n-1)(n-1)^2 $; (2)在$ l^2(γ\ Backslash x)$中没有正laplace eigenfunction。 实际上,(1) - (2)的类似物对任何Anosov子组的$γ$保持至少两个简单的代数组的产品,以及Hitchin子组$γ<\ operatotorname {psl} _d(\ Mathbb r)$,$ d \ d pe 3 $ 3 $。此外,如果$ g $是一个半完美的代数排名群,至少$ 2 $,那么(2)将对任何Anosov子组$γ$的$ G $持有。

Let $G=\operatorname{SO}^\circ(n,1) \times \operatorname{SO}^\circ(n,1)$ and $X={\mathbb H}^{n}\times {\mathbb H}^{n}$ for $n\ge 2$. For a pair $(π_1, π_2)$ of non-elementary convex cocompact representations of a finitely generated group $Σ$ into $\operatorname{SO}^\circ(n,1)$, let $Γ=(π_1\times π_2)(Σ)$. Denoting the bottom of the $L^2$-spectrum of the negative Laplacian on $Γ\backslash X$ by $λ_0$, we show: (1) $L^2(Γ\backslash G)$ is tempered and $λ_0=\frac{1}{2}(n-1)^2$; (2) There exists no positive Laplace eigenfunction in $L^2(Γ\backslash X)$. In fact, analogues of (1)-(2) hold for any Anosov subgroup $Γ$ in the product of at least two simple algebraic groups of rank one as well as for Hitchin subgroups $Γ<\operatorname{PSL}_d(\mathbb R)$, $d\ge 3$. Moreover, if $G$ is a semisimple real algebraic group of rank at least $2$, then (2) holds for any Anosov subgroup $Γ$ of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源