论文标题

现实世界大规模推荐系统的可重复性和平滑激活

Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations

论文作者

Shamir, Gil I., Lin, Dong

论文摘要

现实世界的推荐系统会影响不断增长的域。使用深层网络,现在可以推动此类系统,建议与用户的兴趣和任务更加相关。但是,即使同一系统为同一用户生产,建议,建议序列,请求或查询,它们也可能并不总是可再现的。这个问题几乎没有在学术出版物中受到关注,但实际上在实际生产系统中非常现实和至关重要。我们考虑了真实的大型深模型的可重复性,其预测决定了此类建议。我们证明,在深层模型中使用的著名的校正线性单元(Relu)激活可能是导致不可重复性的主要贡献者。我们建议使用平滑激活来改善建议可重复性。我们描述了一个新颖的平滑激活家族。光滑的relu(smelu),旨在通过数学简单性提高可重复性,并具有更便宜的实现。 Smelu是更广泛的平滑激活家族的成员。尽管改善实际系统可重复性的其他技术通常会以准确的成本呈现出来,但平稳的激活不仅可以提高可重复性,而且可以带来准确的提高。我们报告了来自真实系统的指标,在​​这些系统中,我们能够以可重复性的可重复性增长和更好的准确性可重复可重复的权衡来生产SMELU。其中包括点击率率(CTR)预测系统,内容和应用建议系统。

Real world recommendation systems influence a constantly growing set of domains. With deep networks, that now drive such systems, recommendations have been more relevant to the user's interests and tasks. However, they may not always be reproducible even if produced by the same system for the same user, recommendation sequence, request, or query. This problem received almost no attention in academic publications, but is, in fact, very realistic and critical in real production systems. We consider reproducibility of real large scale deep models, whose predictions determine such recommendations. We demonstrate that the celebrated Rectified Linear Unit (ReLU) activation, used in deep models, can be a major contributor to irreproducibility. We propose the use of smooth activations to improve recommendation reproducibility. We describe a novel family of smooth activations; Smooth ReLU (SmeLU), designed to improve reproducibility with mathematical simplicity, with potentially cheaper implementation. SmeLU is a member of a wider family of smooth activations. While other techniques that improve reproducibility in real systems usually come at accuracy costs, smooth activations not only improve reproducibility, but can even give accuracy gains. We report metrics from real systems in which we were able to productionalize SmeLU with substantial reproducibility gains and better accuracy-reproducibility trade-offs. These include click-through-rate (CTR) prediction systems, content, and application recommendation systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源