论文标题
ERGO-ML I:通过可逆神经网络从积分可观察的特性中推断出Illustristng星系的组装历史
ERGO-ML I: Inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks
论文作者
论文摘要
LambDACDM宇宙学的基本预测是结构的层次结构,因此将星系连续合并为更大的结构。正如人们只能在宇宙历史上的一个特定时间观察星系,这种合并历史原则上仍然无法观察到。通过使用Illustristng项目的TNG100模拟,我们表明可以通过使用机器学习技术从其可观察的属性中推断出不可观察的恒星组装和中央星系的合并历史。 In particular, in this first paper of ERGO-ML (Extracting Reality from Galaxy Observables with Machine Learning), we choose a set of 7 observable integral properties of galaxies (i.e. total stellar mass, redshift, color, stellar size, morphology, metallicity, and age) to infer, from those, the stellar ex-situ fraction, the average merger lookback times and mass ratios, and the lookback time and stellar mass of最后的主要合并。为此,我们使用并比较了多层感知神经网络和条件可逆神经网络(CINN):由于后者,我们还能够推断这些参数的后验分布,因此估计了预测中的不确定性。我们发现,恒星的前态分数和最后一次主要合并的时间由选定的观察力组很好地确定,质量加权的合并质量比不受限制,并且除了出色的质量,恒星质量,出色的形态和恒星年龄之外,是最有用的特性。最后,我们表明cinn恢复了剩余的无法解释的散射和次要互相关。我们的工具可以应用于大型星系调查,以便推断出星系的过去的不可观察的特性,从而实现了通过宇宙学模拟富含星系进化的经验研究。
A fundamental prediction of the LambdaCDM cosmology is the hierarchical build-up of structure and therefore the successive merging of galaxies into more massive ones. As one can only observe galaxies at one specific time in cosmic history, this merger history remains in principle unobservable. By using the TNG100 simulation of the IllustrisTNG project, we show that it is possible to infer the unobservable stellar assembly and merger history of central galaxies from their observable properties by using machine learning techniques. In particular, in this first paper of ERGO-ML (Extracting Reality from Galaxy Observables with Machine Learning), we choose a set of 7 observable integral properties of galaxies (i.e. total stellar mass, redshift, color, stellar size, morphology, metallicity, and age) to infer, from those, the stellar ex-situ fraction, the average merger lookback times and mass ratios, and the lookback time and stellar mass of the last major merger. To do so, we use and compare a Multilayer Perceptron Neural Network and a conditional Invertible Neural Network (cINN): thanks to the latter we are also able to infer the posterior distribution for these parameters and hence estimate the uncertainties in the predictions. We find that the stellar ex-situ fraction and the time of the last major merger are well determined by the selected set of observables, that the mass-weighted merger mass ratio is unconstrained, and that, beyond stellar mass, stellar morphology and stellar age are the most informative properties. Finally, we show that the cINN recovers the remaining unexplained scatter and secondary cross-correlations. Our tools can be applied to large galaxy surveys in order to infer unobservable properties of galaxies' past, enabling empirical studies of galaxy evolution enriched by cosmological simulations.