论文标题
实现A型A型Auslander代数的完美派生类别
Realising perfect derived categories of Auslander algebras of type A as Fukaya-Seidel categories
论文作者
论文摘要
我们证明,在$ \ mathbb {c}^2 $上的某个Lefschetz纤维的福卡 - 西德尔类别相当于Dynkin类型$ \ Mathbb {a} $的Auslander代数的完美派生类别。我们在这些类别和Dyckerhoff-Jasso-Lekili考虑的部分包裹的福卡亚类别之间给出了明确的等价性。我们提供了此类振动的Milnor纤维的完整描述。
We prove that the Fukaya-Seidel categories of a certain family of Lefschetz fibrations on $\mathbb{C}^2$ are equivalent to the perfect derived categories of Auslander algebras of Dynkin type $\mathbb{A}$. We give an explicit equivalence between these categories and the partially wrapped Fukaya categories considered by Dyckerhoff-Jasso-Lekili. We provide a complete description of the Milnor fibre of such fibrations.