论文标题

迈向微观机制的机器学习:基于原子特性的公式搜索晶体结构稳定性

Towards machine learning for microscopic mechanisms: a formula search for crystal structure stability based on atomic properties

论文作者

Gajera, Udaykumar, Storchi, Loriano, Amoroso, Danila, Delodovici, Francesco, Picozzi, Silvia

论文摘要

机器学习(ML)技术正在彻底改变执行高效材料建模的方式。然而,并非所有的ML方法都允许在不同现象中理解微观机制。为了解决后一个方面,我们提出了一种组合机器学习方法,以基于简单且易于访问的成分(例如原子特性)获得物理公式。后者用于构建最终通过线性回归使用的材料特征,以预测半导体二进制化合物相对于锌蓝和岩石晶体结构的能量稳定性。采用的模型是使用第一原理计算构建的数据集培训的。我们的结果表明,已经一维(1D)公式很好地描述了能量学。对自动实现的1D形式的简单网格搜索优化以非常小的计算成本增强了预测性能。此外,我们的方法允许强调公式中涉及的不同原子特性的作用。计算的公式清楚地表明,“空间”原子特性(即半径表明$ s,p,d $电子贝壳的最大概率密度)驱动一个晶体结构相对于另一种晶体结构的稳定,这表明与$ P $ shell shell of Cation shell shell shell shell相关的主要相关性。

Machine Learning (ML) techniques are revolutionizing the way to perform efficient materials modeling. Nevertheless, not all the ML approaches allow for the understanding of microscopic mechanisms at play in different phenomena. To address the latter aspect, we propose a combinatorial machine-learning approach to obtain physical formulas based on simple and easily-accessible ingredients, such as atomic properties. The latter are used to build materials features that are finally employed, through Linear Regression, to predict the energetic stability of semiconducting binary compounds with respect to zincblende and rocksalt crystal structures. The adopted models are trained using dataset built from first-principles calculations. Our results show that already one-dimensional (1D) formulas well describe the energetics; a simple grid-search optimization of the automatically-obtained 1D-formulas enhances the prediction performances at a very small computational cost. In addition, our approach allows to highlight the role of the different atomic properties involved in the formulas. The computed formulas clearly indicate that "spatial" atomic properties (i.e. radii indicating maximum probability densities for $s,p,d$ electronic shells) drive the stabilization of one crystal structure with respect to the other, suggesting the major relevance of the radius associated to the $p$-shell of the cation species.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源