论文标题

部分有缺陷的存储单元编码和界限

Coding and Bounds for Partially Defective Memory Cells

论文作者

Kim, Haider Al, Puchinger, Sven, Tolhuizen, Ludo, Wachter-Zeh, Antonia

论文摘要

本文考虑编码所谓的部分卡住(缺陷)存储单元。此类存储单元只能存储部分信息,因为由于磨损,无法完全使用它们的某些水平。首先,我们提出了能够掩盖$ u $部分卡住的细胞的新结构,同时纠正$ t $随机错误。 “掩盖”的过程决定了一个单词,其条目与(部分)卡在细胞处的可写水平一致。对于$ u> 1 $和字母尺寸$ q> 2 $,我们的新结构在$ t = 0 $的已知构造所需的冗余上有所改善,并且要比掩盖完全卡住的单元格所需的作品(无法存储任何信息)所需的掩盖部分掩盖细胞的冗余所需的冗余。其次,我们表明,将某些部分卡住的细胞视为错误的细胞可以减少某些参数所需的冗余。最后,我们得出了类似单元的式,类似球体的包装和吉尔伯特 - 瓦尔沙莫夫般的边界。数值比较指出,我们的构造与吉尔伯特(Gilbert) - 瓦尔沙莫夫(Varshamov)类似于几个代码参数的界限,例如,通过我们的第一个构造包含全词的BCH代码。

This paper considers coding for so-called partially stuck (defect) memory cells. Such memory cells can only store partial information as some of their levels cannot be used fully due to, e.g., wearout. First, we present new constructions that are able to mask $u$ partially stuck cells while correcting at the same time $t$ random errors. The process of "masking" determines a word whose entries coincide with writable levels at the (partially) stuck cells. For $u>1$ and alphabet size $q>2$, our new constructions improve upon the required redundancy of known constructions for $t=0$, and require less redundancy for masking partially stuck cells than former works required for masking fully stuck cells (which cannot store any information). Second, we show that treating some of the partially stuck cells as erroneous cells can decrease the required redundancy for some parameters. Lastly, we derive Singleton-like, sphere-packing-like, and Gilbert--Varshamov-like bounds. Numerical comparisons state that our constructions match the Gilbert--Varshamov-like bounds for several code parameters, e.g., BCH codes that contain all-one word by our first construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源