论文标题

Lemaître-托尔曼 - 邦迪公制的进化方程式系统包含耦合的暗能量

Evolution equations dynamical system of the Lemaître--Tolman--Bondi metric containing coupled dark energy

论文作者

Blanquet-Jaramillo, Roberto C., Sussman, Roberto A., Aguero, Maximo, Izquierdo, German

论文摘要

我们考虑基于Lemaître-Tolman-Bondi(LTB)度量的不均匀球形对称模型,假设其来源是普通的Baryonic物质,冷暗物质和深色能量的交互式混合物,并具有与两种深色油的能量密度添加成比例的耦合术语。我们将爱因斯坦的场方程减少到一阶的7维自主动力学系统的进化方程和代数约束。我们通过两个子空间投影详细研究了能量密度和空间曲率沿相空间的演变:与Friedman-Lema \^ıtre-Robertson-Walker-Walker公制(不变的子空间)和四维投射的三维预测相关的三维投影,描述了效果的四维投影。与以前的类似来源上的工作相比,我们还对系统的临界点进行了分类和研究,并在数值上求解了初始能量密度和曲率曲线的方程,从而导致球形弹跳,我们的崩溃时间我们会适当地估计。

We consider inhomogeneous spherically symmetric models based on the Lemaître-Tolman-Bondi (LTB) metric, assuming as its source an interactive mixture of ordinary baryonic matter, cold dark matter and dark energy with a coupling term proportional to the addition of energy densities of both dark fluids. We reduce Einstein's field equations to a first order 7-dimensional autonomous dynamical system of evolution equations and algebraic constraints. We study in detail the evolution of the energy density and spatial curvature profiles along the phase space by means of two subspace projections: a three-dimensional projection associated with the solutions of the Friedman-Lema\^ıtre-Robertson-Walker metric (invariant subspace) and a four-dimensional projection describing the evolution of the inhomogeneous fluctuations. We also classify and study the critical points of the system in comparison with previous work on similar sources, as well as solving numerically the equations for initial energy density and curvature profiles that lead to a spherical bounce whose collapsing time we estimate appropriately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源