论文标题

社交媒体视频帖子中的错误信息检测

Misinformation Detection in Social Media Video Posts

论文作者

Wang, Kehan, Chan, David, Zhao, Seth Z., Canny, John, Zakhor, Avideh

论文摘要

随着社交媒体平台越来越多地采用了简短的视频,通过视频帖子减少错误信息的传播已成为社交媒体提供商的关键挑战。在本文中,我们开发了检测社交媒体帖子中错误信息的方法,从而利用了视频和文本等方式。由于缺乏在多模式数据集中进行错误信息检测的大规模公共数据,因此我们从Twitter收集了160,000个视频帖子,并利用自学学习的学习来学习联合视觉和文本数据的表达性表示。在这项工作中,我们提出了两种新方法,用于基于对比度学习和掩盖语言建模的短形式社交媒体视频帖子中的语义不一致。我们证明,我们的新方法在通过随机交汇正面样本和在野外的新手动标记测试集中,用于语义错误信息的新方法,在人工数据中的最新方法优于当前的最新方法。

With the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such as video and text. Due to the lack of large-scale public data for misinformation detection in multi-modal datasets, we collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data. In this work, we propose two new methods for detecting semantic inconsistencies within short-form social media video posts, based on contrastive learning and masked language modeling. We demonstrate that our new approaches outperform current state-of-the-art methods on both artificial data generated by random-swapping of positive samples and in the wild on a new manually-labeled test set for semantic misinformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源