论文标题

通过学术网络的可解释建议的异质图学习

Heterogeneous Graph Learning for Explainable Recommendation over Academic Networks

论文作者

Chen, Xiangtai, Tang, Tao, Ren, Jing, Lee, Ivan, Chen, Honglong, Xia, Feng

论文摘要

随着每年具有研究学位的新毕业生的爆炸性增长,早期研究人员在适当的机构找到工作的前所未有的挑战。这项研究旨在了解学术工作过渡的行为,因此为博士毕业生建议合适的机构。具体来说,我们设计了一个深度学习模型,以预测早期研究人员的职业发展并提供建议。该设计建立在学术/学术网络之上,其中包含有关学者和机构之间科学合作的丰富信息。我们构建了一个异质的学术网络,以促进探索职业举动的行为以及机构对学者的建议。我们设计了一种无监督的学习模型,称为HAI(异质图注意信息),该模型汇总了注意机制和相互信息的机构建议。此外,我们提出了学者的注意力和元路径注意,以发现几个元路径之间的隐藏关系。使用这些机制,HAI提供了有序的建议,并提供了解释性。我们根据基线方法在现实世界数据集上评估HAI。实验结果验证了我们方法的有效性和效率。

With the explosive growth of new graduates with research degrees every year, unprecedented challenges arise for early-career researchers to find a job at a suitable institution. This study aims to understand the behavior of academic job transition and hence recommend suitable institutions for PhD graduates. Specifically, we design a deep learning model to predict the career move of early-career researchers and provide suggestions. The design is built on top of scholarly/academic networks, which contains abundant information about scientific collaboration among scholars and institutions. We construct a heterogeneous scholarly network to facilitate the exploring of the behavior of career moves and the recommendation of institutions for scholars. We devise an unsupervised learning model called HAI (Heterogeneous graph Attention InfoMax) which aggregates attention mechanism and mutual information for institution recommendation. Moreover, we propose scholar attention and meta-path attention to discover the hidden relationships between several meta-paths. With these mechanisms, HAI provides ordered recommendations with explainability. We evaluate HAI upon a real-world dataset against baseline methods. Experimental results verify the effectiveness and efficiency of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源