论文标题

$ c^0 $ Symplectic和Smooth Submanifolds的接触几何形状中的新步骤

New steps in $C^0$ symplectic and contact geometry of smooth submanifolds

论文作者

Stokić, Maksim

论文摘要

我们在封闭的歧管的cotangent束中为拉格朗日阿诺德猜想提供了$ c^0 $反例。此外,我们证明了接触歧管中的亚临界各向同性嵌入的定量$ h $原理,并提供了接触同构的明确结构,该构造将亚临界各向同性曲线带到横向曲线。在刚性的一面,我们给出了Dimitroglou Rizell和Sullivan定理\ Cite {RS22}的另一个证明,该{RS22}指出,只要它们的图像光滑,它通过触点同构保留了legendrian结。此外,我们的方法还提供了相关的较高维度刚度的示例。

We provide a $C^0$ counterexample to the Lagrangian Arnold conjecture in the cotangent bundle of a closed manifold. Additionally, we prove a quantitative $h$-principle for subcritical isotropic embeddings in contact manifolds, and provide an explicit construction of a contact homeomorphism which takes a subcritical isotropic curve to a transverse one. On the rigid side, we give another proof of the Dimitroglou Rizell and Sullivan theorem \cite{RS22} which states that Legendrian knots are preserved by contact homeomorphisms, provided their image is smooth. Moreover, our method gives related examples of rigidity in higher dimensions as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源