论文标题

野外的360深度估计 - DEPTH360数据集和Segfuse网络

360 Depth Estimation in the Wild -- The Depth360 Dataset and the SegFuse Network

论文作者

Feng, Qi, Shum, Hubert P. H., Morishima, Shigeo

论文摘要

来自全向图像的单视深度估计已随着其广泛的应用程序(例如自主驾驶和场景重建)的广泛应用而广受欢迎。尽管基于数据驱动的学习方法在该领域表现出了巨大的潜力,但是稀缺的培训数据和无效的360估计算法仍然是两个关键局限性,阻碍了各种领域的准确估计。在这项工作中,我们首先建立了一个大型数据集,其不同的设置为DEPTH360,以解决培训数据问题。这是通过使用测试时间训练方法探索互联网的360个视频的360个视频来实现的,该方法利用每个全向序列中的独特信息。借助新的几何和时间约束,我们的方法产生了一致且令人信服的深度样本,以促进单视估计。然后,我们提出了一个端到端的两支分支多任务学习网络Segfuse,该网络模仿人眼,以有效地从数据集中学习并估算来自不同单眼RGB图像的高质量深度图。使用外围分支,该分支使用等值的投影进行深度估计,并使用Cubemap投影进行语义分割的中央凹分支,我们的方法可以预测一致的全局深度,同时在局部区域保持清晰的细节。实验结果表明对最新方法的表现良好。

Single-view depth estimation from omnidirectional images has gained popularity with its wide range of applications such as autonomous driving and scene reconstruction. Although data-driven learning-based methods demonstrate significant potential in this field, scarce training data and ineffective 360 estimation algorithms are still two key limitations hindering accurate estimation across diverse domains. In this work, we first establish a large-scale dataset with varied settings called Depth360 to tackle the training data problem. This is achieved by exploring the use of a plenteous source of data, 360 videos from the internet, using a test-time training method that leverages unique information in each omnidirectional sequence. With novel geometric and temporal constraints, our method generates consistent and convincing depth samples to facilitate single-view estimation. We then propose an end-to-end two-branch multi-task learning network, SegFuse, that mimics the human eye to effectively learn from the dataset and estimate high-quality depth maps from diverse monocular RGB images. With a peripheral branch that uses equirectangular projection for depth estimation and a foveal branch that uses cubemap projection for semantic segmentation, our method predicts consistent global depth while maintaining sharp details at local regions. Experimental results show favorable performance against the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源