论文标题

基于Bilstm-CNN的多任务学习方法用于纤维故障诊断

A BiLSTM-CNN based Multitask Learning Approach for Fiber Fault Diagnosis

论文作者

Abdelli, Khouloud, Griesser, Helmut, Tropschug, Carsten, Pachnicke, Stephan

论文摘要

提出了一种基于堆叠的双向长期记忆(BILSTM)网络和卷积神经网络(CNN)的新型多任务学习方法,用于检测,定位,表征和识别纤维故障。它的表现胜过常规使用的技术。

A novel multitask learning approach based on stacked bidirectional long short-term memory (BiLSTM) networks and convolutional neural networks (CNN) for detecting, locating, characterizing, and identifying fiber faults is proposed. It outperforms conventionally employed techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源