论文标题

脱壳立方体超数耦合到$ \ MATHCAL {N} = 2 $更高的自旋量规超级场

Off-shell cubic hypermultiplet couplings to $\mathcal{N}=2$ higher spin gauge superfields

论文作者

Buchbinder, Ioseph, Ivanov, Evgeny, Zaigraev, Nikita

论文摘要

我们明显构建了$ 4D,\ Mathcal {n} = 2 $ supersymmetric and量规偏外的离子离子物质近距离耦合,直到更高的整数旋转仪表$ \ mathcal {n} = 2 $多数$倍数= 2 $多重组。 Hypermultiplet由分析谐波$ 4D,\ Mathcal {n} = 2 $ superfield $ q^{+} $,带有物理组件spins $ {\ bf s} =(\ bf s} =(\ frac {1} {1} {1} {2} {2} \ ,, \ ,, \; 0)$ and a Infiniary gulumb and auxirary off。构造的立方耦合具有示意性结构$ q^+\ hat {\ cal h}^{++} _ {(s)} q^+$,其中$ \ hat {\ cal h}^{++} {++} _ {(s)} _ {(s)} $是最高级别的群体,可容纳最高学位$( $ \ MATHCAL {N} = 2 $乘,具有最高旋转$ {\ bf s} $的倍数。对于奇数$ {\ bf s} $,量规组的生成器和耦合与$ {\ rm u}(1)_ {pg} $生成器的内部$ {\ rm su}(\ rm su}(2)_ {pg} $ symmetry of hypermultiplet and so pg i is}不间断。如果此$ {\ rm u}(1)_ {pg} $以$ 4D的中心费用,\ Mathcal {n} = 2 $ supersymmetry,则会生成hypermultiplet的质量,并且是奇数$ {\ bf s} $ couplings $ couplings couplings couplings nish in n opem bass boss boss boss boss boss boss boss boss boss boss boss的限制的消失。对于$ {\ bf s} $,可以针对巨大和无质量(中央电荷中性的)超型超极化的高旋转量规变换和立方超级场耦合,而不包括$ {\ rm u}(1)_ {pg} $生成器。所有这些功能直接扩展到具有最大内部对称性$ {\ rm usp}(2n)\ times {\ rm su}(2)$的$ n $ hypermultiplets的情况。

We construct manifestly $4D, \mathcal{N}=2$ supersymmetric and gauge invariant off-shell cubic couplings of matter hypermultiplets to the higher integer spin gauge $\mathcal{N}=2$ multiplets introduced in arXiv:2109.07639 [hep-th]. The hypermultiplet is described by an analytic harmonic $4D, \mathcal{N}=2$ superfield $q^{+}$ with the physical component spins ${\bf s} = (\frac{1}{2}\,, \;0)$ and an infinite number of auxiliary fields. The cubic coupling constructed has the schematic structure $q^+ \hat{\cal H}^{++}_{(s)} q^+$, where $\hat{\cal H}^{++}_{(s)}$ is a differential analytic operator of the highest degree $({\bf s} - 1)$ accommodating the massless gauge $\mathcal{N}=2$ multiplet with the highest spin ${\bf s}$. For odd ${\bf s}$ the gauge group generators and couplings are proportional to ${\rm U}(1)_{PG}$ generator of the internal ${\rm SU}(2)_{PG}$ symmetry of the hypermultiplet and so do not exist if ${\rm SU}(2)_{PG}$ is unbroken. If this ${\rm U}(1)_{PG}$ is identified with the central charge of $ 4D, \mathcal{N}=2$ supersymmetry, a mass for the hypermultiplet is generated and the odd ${\bf s}$ couplings vanish in the proper massless limit. For even ${\bf s}$ the higher-spin gauge transformations and cubic superfield couplings can be defined for both massive and massless (central-charge neutral) hypermultiplets without including ${\rm U}(1)_{PG}$ generator. All these features directly extend to the case of $n$ hypermultiplets with the maximal internal symmetry ${\rm USp}(2n) \times {\rm SU}(2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源