论文标题

使用深度学习对乳房密度估计的多重建研究

A multi-reconstruction study of breast density estimation using Deep Learning

论文作者

Gupta, Vikash, Demirer, Mutlu, Maxwell, Robert W., White, Richard D., Erdal, Barbaros Selnur

论文摘要

乳房密度估计是识别患有乳腺癌的个体的关键任务之一。由于乳房X线照片的脂肪组织背景中的对比度低和波动,这通常是具有挑战性的。在大多数情况下,乳房密度是手动估算的,放射科医生分配了由乳房成像和报告数据系统(BI-RADS)决定的四个密度类别之一。在自动化乳房密度分类管道的方向上已经做出了努力。 乳房密度估计是在筛查考试中执行的关键任务之一。茂密的乳房更容易受到乳腺癌的影响。由于乳房X线照片的脂肪组织背景中的对比度低和波动,密度估计是具有挑战性的。传统的乳房X线照片已被Tomosynsiss及其其他低辐射剂量变体所取代(例如,Hologic的智能2D和C-View)。由于需要低剂量的要求,越来越多的筛查中心赞成智能的2D视图和C视图。乳房密度估计的深度学习研究仅使用一种训练神经网络的方式。但是,这样做会限制数据集中的图像数量。在本文中,我们表明,对所有模式进行训练的神经网络比以任何单一模式训练的神经网络都表现更好。我们使用接收器操作员特征曲线下的区域讨论这些结果。

Breast density estimation is one of the key tasks in recognizing individuals predisposed to breast cancer. It is often challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Most of the time, the breast density is estimated manually where a radiologist assigns one of the four density categories decided by the Breast Imaging and Reporting Data Systems (BI-RADS). There have been efforts in the direction of automating a breast density classification pipeline. Breast density estimation is one of the key tasks performed during a screening exam. Dense breasts are more susceptible to breast cancer. The density estimation is challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Traditional mammograms are being replaced by tomosynthesis and its other low radiation dose variants (for example Hologic' Intelligent 2D and C-View). Because of the low-dose requirement, increasingly more screening centers are favoring the Intelligent 2D view and C-View. Deep-learning studies for breast density estimation use only a single modality for training a neural network. However, doing so restricts the number of images in the dataset. In this paper, we show that a neural network trained on all the modalities at once performs better than a neural network trained on any single modality. We discuss these results using the area under the receiver operator characteristics curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源