论文标题

可训练和可区分量子生成建模的协议

Protocols for Trainable and Differentiable Quantum Generative Modelling

论文作者

Kyriienko, Oleksandr, Paine, Annie E., Elfving, Vincent E.

论文摘要

我们提出了一种学习概率分布的方法作为可区分的量子电路(DQC),该电路可以实现有效的量子生成建模(QGM)和合成数据生成。与现有的QGM方法相反,我们对基于DQC的模型进行培训,其中数据是在带有相特征图的潜在空间中编码的,然后是变异量子电路。然后,我们使用固定的统一转换将受过训练的模型映射到位基础,并在最简单的情况下与量子傅立叶变换电路一致。这允许使用单次读数从参数化分布进行快速采样。重要的是,简化的潜在空间训练提供了自动差异化的模型,我们可以通过求解使用量子协议的固定固定和依赖的fokker-planck方程来访问随机微分方程(SDE)的分布的样本。最后,我们的方法为通过(固定的)纠缠层明确相关的量子寄存器打开了多维生成建模的途径。在这种情况下,量子计算机可以作为有效的采样器提供优势,该采样器执行复杂的逆变换采样,由量子力学的基本定律实现。在技​​术方面,进步是多重的,因为我们介绍了相位特征图,分析其属性,并开发了包括Qubit-Wine训练和特征图的稀疏功能的频率损伤技术。

We propose an approach for learning probability distributions as differentiable quantum circuits (DQC) that enable efficient quantum generative modelling (QGM) and synthetic data generation. Contrary to existing QGM approaches, we perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit. We then map the trained model to the bit basis using a fixed unitary transformation, coinciding with a quantum Fourier transform circuit in the simplest case. This allows fast sampling from parametrized distributions using a single-shot readout. Importantly, simplified latent space training provides models that are automatically differentiable, and we show how samples from distributions propagated by stochastic differential equations (SDEs) can be accessed by solving stationary and time-dependent Fokker-Planck equations with a quantum protocol. Finally, our approach opens a route to multidimensional generative modelling with qubit registers explicitly correlated via a (fixed) entangling layer. In this case quantum computers can offer advantage as efficient samplers, which perform complex inverse transform sampling enabled by the fundamental laws of quantum mechanics. On a technical side the advances are multiple, as we introduce the phase feature map, analyze its properties, and develop frequency-taming techniques that include qubit-wise training and feature map sparsification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源