论文标题
对数电势和Affleck-Dine冷凝物碎片的电荷交换Q球
Charge-Swapping Q-balls in a Logarithmic Potential and Affleck-Dine condensate fragmentation
论文作者
论文摘要
我们研究了一种复合Q-balls的电荷交换Q-balls,其中正面和负电荷与时间共存并与时间交换,在具有对数电势的模型中自然而然地在标准模型的超对称扩展中产生。我们表明,在早期宇宙的Affleck-Dine碎片过程中,可以大量生成电荷Q-Balls。我们发现,具有对数电势的电荷交换Q球非常稳定。通过长时间,具有吸收边界条件的并行晶格模拟,我们发现,具有低多物的物体的寿命至少为3+1d中的10^5/m $ $ 4.6 \ timess 10^5/m $,$ 2.5 \ times 10^7/m $在2+1d中,$ m $是标量场的质量标尺。我们还为初始条件的吸引子盆地绘制了这些充电Q球的形成。
We study charge-swapping Q-balls, a kind of composite Q-ball where positive and negative charges co-exist and swap with time, in models with a logarithmic potential that arises naturally in supersymmetric extensions of the Standard Model. We show that charge-swapping Q-balls can be copiously generated in the Affleck-Dine fragmentation process in the early universe. We find that the charge-swapping Q-balls with the logarithmic potential are extremely stable. By performing long time, parallelized lattice simulations with absorbing boundary conditions, we find that the lifetimes of such objects with low multipoles are at least $4.6 \times 10^5/m$ in 3+1D and $2.5 \times 10^7/m$ in 2+1D, where $m$ is the mass scale of the scalar field. We also chart the attractor basin of the initial conditions to form these charge-swapping Q-balls.