论文标题
神经木偶:从体积视频中无监督运动骨骼和潜在动力学
Neural Marionette: Unsupervised Learning of Motion Skeleton and Latent Dynamics from Volumetric Video
论文作者
论文摘要
我们提出了神经木偶,这是一种无监督的方法,它从动态序列中发现骨骼结构,并学会产生与观察到的运动动力学一致的多种运动。考虑到在任意运动下对铰接体的点云观察的视频流,我们的方法发现了未知的低维骨骼关系,可以有效地代表运动。然后,发现的结构被用来编码潜在结构中动态序列的运动先验,可以将其解码为相对关节旋转,以表示完整的骨骼运动。我们的方法在没有任何基本运动或骨骼结构的知识的情况下起作用,我们证明发现的结构甚至可以与代表4D运动序列的手工标记的地面真实骨架相提并论。骨骼结构嵌入了可能的运动空间的一般语义,可以为各种情况产生运动。我们验证了学位的先验运动可以推广到多模式序列的产生,两个姿势的插值以及对不同骨骼结构的运动重新定位。
We present Neural Marionette, an unsupervised approach that discovers the skeletal structure from a dynamic sequence and learns to generate diverse motions that are consistent with the observed motion dynamics. Given a video stream of point cloud observation of an articulated body under arbitrary motion, our approach discovers the unknown low-dimensional skeletal relationship that can effectively represent the movement. Then the discovered structure is utilized to encode the motion priors of dynamic sequences in a latent structure, which can be decoded to the relative joint rotations to represent the full skeletal motion. Our approach works without any prior knowledge of the underlying motion or skeletal structure, and we demonstrate that the discovered structure is even comparable to the hand-labeled ground truth skeleton in representing a 4D sequence of motion. The skeletal structure embeds the general semantics of possible motion space that can generate motions for diverse scenarios. We verify that the learned motion prior is generalizable to the multi-modal sequence generation, interpolation of two poses, and motion retargeting to a different skeletal structure.