论文标题
V2X-SIM:自动驾驶的多代理协作感知数据集和基准
V2X-Sim: Multi-Agent Collaborative Perception Dataset and Benchmark for Autonomous Driving
论文作者
论文摘要
车辆到所有(V2X)通信技术使车辆与附近环境中许多其他实体之间的协作可以从根本上改善自动驾驶的感知系统。但是,缺乏公共数据集大大限制了协作感知的研究进度。为了填补这一空白,我们提出了V2X-SIM,这是一个用于V2X辅助自动驾驶的全面模拟多代理感知数据集。 V2X-SIM提供:(1)\ hl {多代理}传感器录音来自路边单元(RSU)和多辆具有协作感知感的车辆,(2)多模式传感器流,可促进多模式感知,以及(3)支持各种感知任务的多元化地面真相。同时,我们构建了一个开源测试台,并为最先进的协作感知算法提供了基准,包括三个任务,包括检测,跟踪和细分。 V2X-SIM试图在现实数据集广泛使用之前刺激自动驾驶的协作感知研究。我们的数据集和代码可在\ url {https://ai4ce.github.io/v2x-sim/}上获得。
Vehicle-to-everything (V2X) communication techniques enable the collaboration between vehicles and many other entities in the neighboring environment, which could fundamentally improve the perception system for autonomous driving. However, the lack of a public dataset significantly restricts the research progress of collaborative perception. To fill this gap, we present V2X-Sim, a comprehensive simulated multi-agent perception dataset for V2X-aided autonomous driving. V2X-Sim provides: (1) \hl{multi-agent} sensor recordings from the road-side unit (RSU) and multiple vehicles that enable collaborative perception, (2) multi-modality sensor streams that facilitate multi-modality perception, and (3) diverse ground truths that support various perception tasks. Meanwhile, we build an open-source testbed and provide a benchmark for the state-of-the-art collaborative perception algorithms on three tasks, including detection, tracking and segmentation. V2X-Sim seeks to stimulate collaborative perception research for autonomous driving before realistic datasets become widely available. Our dataset and code are available at \url{https://ai4ce.github.io/V2X-Sim/}.