论文标题

半量化的大厅效应和电流电流分布的电源法衰减

Half-Quantized Hall Effect and Power Law Decay of Edge Current Distribution

论文作者

Zou, Jin-Yu, Fu, Bo, Wang, Huan-Wen, Hu, Zi-Ang, Shen, Shun-Qing

论文摘要

半量化的霍尔电导是具有奇迹异常的量子系统的特征。在这里,我们研究了一类均等异常半学的拓扑和运输特性,其中在动量空间或真实空间中与无质量的迪拉克·费米斯共存,并在无质量的范​​围内发现了一个明显的体积,即通过巨大的质量质量的迪拉克·福尔米(Fermions)实现了一个较大的大厅,而不是由大量的dirac fermions实现,而不是fermions formions for form for the berrivial curvime curvitive curvitive curvime ass the Borsive she verive ass the Boservient ac verication she vervience。边缘电流的空间分布从幂定律中脱离边界,而不是整数量子霍尔效应中的指数定律。我们进一步介绍了平等性半学与三维半磁性拓扑绝缘子和二维光子晶体的物理相关性。

The half-quantized Hall conductance is characteristic of quantum systems with parity anomaly. Here we investigate topological and transport properties of a class of parity anomalous semimetals, in which massive Dirac fermions coexist with massless Dirac fermions in momentum space or real space, and uncovered a distinct bulk-edge correspondence that the half-quantized Hall effect is realized via the bulk massless Dirac fermions while the nontrivial Berry curvature is provided by the massive Dirac fermions. The spatial distribution of the edge current decays away from the boundary in a power law instead of an exponential law in integer quantum Hall effect. We further address physical relevance of parity anomalous semimetal to three-dimensional semi-magnetic topological insulators and two-dimensional photonic crystals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源