论文标题
在各向异性椭圆问题上比较标准和稳定的虚拟元素
Comparison of standard and stabilization free Virtual Elements on anisotropic elliptic problems
论文作者
论文摘要
在这封信中,我们将标准虚拟元素方法(VEM)的行为和稳定化的自由放大增强虚拟元素方法(E $^2 $ VEM)与某些椭圆测试问题的重点进行了比较,其解决方案和扩散性张量的特征是Anisotropies的特征。结果表明,避免由E $^2 $ VEM方法提供的任意稳定零件的可能性可以减少一般多边形网格的错误幅度并帮助收敛。
In this letter we compare the behaviour of standard Virtual Element Methods (VEM) and stabilization free Enlarged Enhancement Virtual Element Methods (E$^2$VEM) with the focus on some elliptic test problems whose solution and diffusivity tensor are characterized by anisotropies. Results show that the possibility to avoid an arbitrary stabilizing part, offered by E$^2$VEM methods, can reduce the magnitude of the error on general polygonal meshes and help convergence.