论文标题

增强拉格朗日的方法来推导不连续的盖尔金方法,以解决非线性弹性问题

Augmented Lagrangian approach to deriving discontinuous Galerkin methods for nonlinear elasticity problems

论文作者

Hansbo, Peter, Larson, Mats G.

论文摘要

我们使用增强的拉格朗日形式主义来得出非线性弹性问题的不连续的盖尔金制剂。在弹性中,应力通常是应变的对称函数,当将有限元符合有限元时,导致纽顿法中的对称切线​​刚度矩阵。通过使用增强的Lagrangian框架,我们还可以在不连续的Galerkin方法中获得对称切线刚度矩阵。我们建议采用两种不同的方法,并通过可塑性和大变形超弹性提供例子。

We use the augmented Lagrangian formalism to derive discontinuous Galerkin formulations for problems in nonlinear elasticity. In elasticity stress is typically a symmetric function of strain, leading to symmetric tangent stiffness matrices in Newtons method when conforming finite elements are used for discretization. By use of the augmented Lagrangian framework, we can also obtain symmetric tangent stiffness matrices in discontinuous Galerkin methods. We suggest two different approaches and give examples from plasticity and from large deformation hyperelasticity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源