论文标题

Sigma-net:深度学习网络,以区分二进制黑洞信号和短次噪声瞬变

SiGMa-Net: Deep learning network to distinguish binary black hole signals from short-duration noise transients

论文作者

Choudhary, Sunil, More, Anupreeta, Suyamprakasam, Sudhagar, Bose, Sukanta

论文摘要

Blip小故障是Ligo数据中的一种短期噪声瞬变,是二进制黑洞(BBH)搜索的滋扰。它们会显着影响BBH搜索敏感性,因为它们的时间域形态非常相似,并且在否决它们时会造成困难。在这项工作中,我们构建了一个深度学习的神经网络,以有效地将BBH信号与Blip Glitches区分开。我们介绍了正弦高斯投影(SGP)地图,这些图是GW频域数据段的投影,这是根据质量因子和中心频率定义的正弦高斯人的投影。我们将SGP地图馈送到我们深入学习的神经网络中,该神经网络对BBH信号和BLIP进行了分类。尽管对BBH信号进行了模拟,但所使用的BLIP在我们的整个分析过程中取自实际数据。我们表明,与使用传统$ $χ^2 $和正弦高斯$χ^2 $获得的结果相比,我们的网络显着提高了BBH信号的识别。例如,我们的网络以$ 10^{ - 2} $的假阳性速率提高了75%的敏感性,总质量为$ [80,140] 〜m _ {\ odot} $,范围内的质量为$ [30,140]此外,它正确识别了GWTC-3中95%的实际GW事件。分类的计算时间为数千个核心上的SGP地图几分钟。通过在下一版本的算法中进一步优化,我们预计计算成本会进一步降低。我们提出的方法可以潜在地改善Ligo-Virgo GW数据分析中的否决过程,并可以想象支持识别低延迟管道中的GW信号。

Blip glitches, a type of short-duration noise transient in the LIGO--Virgo data, are a nuisance for the binary black hole (BBH) searches. They affect the BBH search sensitivity significantly because their time-domain morphologies are very similar, and that creates difficulty in vetoing them. In this work, we construct a deep-learning neural network to efficiently distinguish BBH signals from blip glitches. We introduce sine-Gaussian projection (SGP) maps, which are projections of GW frequency-domain data snippets on a basis of sine-Gaussians defined by the quality factor and central frequency. We feed the SGP maps to our deep-learning neural network, which classifies the BBH signals and blips. Whereas the BBH signals are simulated, the blips used are taken from real data throughout our analysis. We show that our network significantly improves the identification of the BBH signals in comparison to the results obtained using traditional-$χ^2$ and sine-Gaussian $χ^2$. For example, our network improves the sensitivity by 75% at a false-positive rate of $10^{-2}$ for BBHs with total mass in the range $[80,140]~M_{\odot}$ and SNR in the range $[3,8]$. Also, it correctly identifies 95% of the real GW events in GWTC-3. The computation time for classification is a few minutes for thousands of SGP maps on a single core. With further optimisation in the next version of our algorithm, we expect a further reduction in the computational cost. Our proposed method can potentially improve the veto process in the LIGO--Virgo GW data analysis and conceivably support identifying GW signals in low-latency pipelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源