论文标题

QUERTCI:一种集成GitHub问题查询与注释分类的工具

QuerTCI: A Tool Integrating GitHub Issue Querying with Comment Classification

论文作者

Paing, Ye, Vélez, Tatiana Castro, Khatchadourian, Raffi

论文摘要

经验软件工程(ESE)研究人员研究(开源)项目问题以及内部的评论和线程,以发现开发人员在整合新技术,平台和编程语言构造时面临的挑战。但是,这些线程积累,变得笨拙,并阻碍任何洞察力研究人员可能会获得。尽管现有方法通过对问题线程注释进行分类来减轻这种负担,但搜索流行的开源软件存储库(例如,Github上的开源软件存储库)之间存在差距,以了解包含特定关键字的问题,并将结果馈送到分类模型中。本文展示了一种名为Quertci的研究基础架构工具,该工具通过将GitHub问题注释搜索API与现有方法中的分类模型集成来弥合这一差距。使用查询,ESE研究人员可以检索包含特定关键字的GitHub问题,例如与特定的编程语言构造相关的问题,并随后对这些问题中的讨论进行了分类。我们希望ESE研究人员可以使用我们的工具来发现与特定关键字相关的挑战,该挑战通过流行的开源存储库比以前更加无缝。可以在以下网址找到一个工具演示视频:https://youtu.be/fadksxn0quk。

Empirical Software Engineering (ESE) researchers study (open-source) project issues and the comments and threads within to discover -- among others -- challenges developers face when incorporating new technologies, platforms, and programming language constructs. However, such threads accumulate, becoming unwieldy and hindering any insight researchers may gain. While existing approaches alleviate this burden by classifying issue thread comments, there is a gap between searching popular open-source software repositories (e.g., those on GitHub) for issues containing particular keywords and feeding the results into a classification model. This paper demonstrates a research infrastructure tool called QuerTCI that bridges this gap by integrating the GitHub issue comment search API with the classification models found in existing approaches. Using queries, ESE researchers can retrieve GitHub issues containing particular keywords, e.g., those related to a specific programming language construct, and, subsequently, classify the discussions occurring in those issues. We hope ESE researchers can use our tool to uncover challenges related to particular technologies using specific keywords through popular open-source repositories more seamlessly than previously possible. A tool demonstration video may be found at: https://youtu.be/fADKSxn0QUk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源