论文标题
图形计算机学习的图形数据增强:调查
Graph Data Augmentation for Graph Machine Learning: A Survey
论文作者
论文摘要
数据增强最近已经看到对图机学习的兴趣增加,因为它证明了通过增加的培训数据证明了改善模型性能和概括的能力。尽管最近的激增,但由于图形数据的复杂,非欧国人的结构带来的挑战,该区域仍然相对较小,这限制了传统增强操作对其他类型的图像,视频或文本数据的直接类似化。我们的工作旨在对现有的图形数据增强方法进行必要和及时的概述;值得注意的是,我们对图形数据增强方法进行了全面,系统的调查,以结构化的方式总结了文献。我们首先介绍了三种不同的分类法,分别从数据,任务和学习角度分别对图形数据增强方法进行分类。接下来,我们介绍了图形数据增强的最新进展,这取决于它们的方法和应用程序。最后,我们概述了目前未解决的挑战和未来研究的方向。总体而言,我们的工作旨在阐明图表增强图中现有文献的格局,并激发该领域的其他工作,为更广泛的图形机器学习域中的研究人员和从业人员提供有用的资源。此外,我们在https://github.com/zhao-tong/graph-data-augmentation-papers上提供了连续更新的阅读列表。
Data augmentation has recently seen increased interest in graph machine learning given its demonstrated ability to improve model performance and generalization by added training data. Despite this recent surge, the area is still relatively under-explored, due to the challenges brought by complex, non-Euclidean structure of graph data, which limits the direct analogizing of traditional augmentation operations on other types of image, video or text data. Our work aims to give a necessary and timely overview of existing graph data augmentation methods; notably, we present a comprehensive and systematic survey of graph data augmentation approaches, summarizing the literature in a structured manner. We first introduce three different taxonomies for categorizing graph data augmentation methods from the data, task, and learning perspectives, respectively. Next, we introduce recent advances in graph data augmentation, differentiated by their methodologies and applications. We conclude by outlining currently unsolved challenges and directions for future research. Overall, our work aims to clarify the landscape of existing literature in graph data augmentation and motivates additional work in this area, providing a helpful resource for researchers and practitioners in the broader graph machine learning domain. Additionally, we provide a continuously updated reading list at https://github.com/zhao-tong/graph-data-augmentation-papers.