论文标题
在对抗损失下未知亚曼叶的最小分布估计率
Minimax Rate of Distribution Estimation on Unknown Submanifold under Adversarial Losses
论文作者
论文摘要
来自具有低维结构的高维数据的统计推断最近引起了很多关注。在机器学习中,深层生成建模方法通过从基础分布中创建新样本来隐式估计复杂对象的分布,并在生成合成现实的图像和文本方面取得了巨大成功。这些方法中的关键步骤是提取可准确重建原始数据(解码)的潜在特征或表示(编码)。换句话说,在分布建模和估计中,隐式假定和使用了低维歧管结构。为了了解生成模型中低维歧管结构的好处,我们建立了一个通用的最小框架,用于对对抗性损失下未知的子手机的分布估算,并在目标分布和歧管上具有适当的平滑度假设。已建立的最小值率阐明了各种问题特征,包括数据的内在维度和目标分布的平滑度和多种多样的水平,都会影响高维分布估计的基本限制。为了证明Minimax上限,我们基于局部拟合的生成模型的混合物构建了一个估计器,该估计值是由统一技术从差分几何形状的分配而动机的,对于涵盖基础数据歧管不承认全局参数化的情况是必不可少的。我们还提出了一个数据驱动的自适应估计器,该估计量在大量分配类别中同时达到最佳速率的对数因子。
Statistical inference from high-dimensional data with low-dimensional structures has recently attracted lots of attention. In machine learning, deep generative modeling approaches implicitly estimate distributions of complex objects by creating new samples from the underlying distribution, and have achieved great success in generating synthetic realistic-looking images and texts. A key step in these approaches is the extraction of latent features or representations (encoding) that can be used for accurately reconstructing the original data (decoding). In other words, low-dimensional manifold structure is implicitly assumed and utilized in the distribution modeling and estimation. To understand the benefit of low-dimensional manifold structure in generative modeling, we build a general minimax framework for distribution estimation on unknown submanifold under adversarial losses, with suitable smoothness assumptions on the target distribution and the manifold. The established minimax rate elucidates how various problem characteristics, including intrinsic dimensionality of the data and smoothness levels of the target distribution and the manifold, affect the fundamental limit of high-dimensional distribution estimation. To prove the minimax upper bound, we construct an estimator based on a mixture of locally fitted generative models, which is motivated by the partition of unity technique from differential geometry and is necessary to cover cases where the underlying data manifold does not admit a global parametrization. We also propose a data-driven adaptive estimator that is shown to simultaneously attain within a logarithmic factor of the optimal rate over a large collection of distribution classes.