论文标题

Tinyman:轻巧的能量经理,使用加固学习来收集可穿戴物联网设备

tinyMAN: Lightweight Energy Manager using Reinforcement Learning for Energy Harvesting Wearable IoT Devices

论文作者

Basaklar, Toygun, Tuncel, Yigit, Ogras, Umit Y.

论文摘要

低功率电子和机器学习技术的进步导致许多新型可穿戴物联网设备。这些设备的电池容量和计算能力有限。因此,从环境来源收集能量是为这些低能可穿戴设备供电的有前途的解决方案。他们需要最佳地管理收获的能量,以实现能量中性的运行,从而消除了补给要求。由于收获能量的动态性质和目标设备的电池能量限制,最佳能源管理是一项具有挑战性的任务。为了应对这一挑战,我们提出了一个基于强化的学习能源管理框架Tinyman,用于资源受限的可穿戴物联网设备。该框架在动态能量收集模式和电池限制下最大限度地利用了目标装置的利用。此外,Tinyman不依赖于收获能量的预测,这使其成为一种无预测的方法。由于其小于100 kb的小记忆足迹,我们使用Tensorflow Lite在可穿戴设备的原型上部署了Tinyman。我们的评估表明,与先前的方法相比,Tinyman的实现小于2.36毫秒和27.75 $ $ J J $ J,同时保持高达45%的公用事业。

Advances in low-power electronics and machine learning techniques lead to many novel wearable IoT devices. These devices have limited battery capacity and computational power. Thus, energy harvesting from ambient sources is a promising solution to power these low-energy wearable devices. They need to manage the harvested energy optimally to achieve energy-neutral operation, which eliminates recharging requirements. Optimal energy management is a challenging task due to the dynamic nature of the harvested energy and the battery energy constraints of the target device. To address this challenge, we present a reinforcement learning-based energy management framework, tinyMAN, for resource-constrained wearable IoT devices. The framework maximizes the utilization of the target device under dynamic energy harvesting patterns and battery constraints. Moreover, tinyMAN does not rely on forecasts of the harvested energy which makes it a prediction-free approach. We deployed tinyMAN on a wearable device prototype using TensorFlow Lite for Micro thanks to its small memory footprint of less than 100 KB. Our evaluations show that tinyMAN achieves less than 2.36 ms and 27.75 $μ$J while maintaining up to 45% higher utility compared to prior approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源